
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ACM-HK Programming Contest 2023
Contest Analysis

Zhejiang University

06.10.2023

Zhejiang University 06.10.2023 1 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A. Putata Strikes Back
Description

Given three string sequences P,Q,R. Find the number of pairs of string
(A,B) such that A is a prefix of Pi, B is a prefix of Qj and AB is a
substring of Rk.

Zhejiang University 06.10.2023 2 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A. Putata Strikes Back
Solution

Build Aho-Corasick Automaton on P and QR, here QR means reverse every
string in Q. Let’s denote them as AP and AQ.
For string S ∈ R of length l, assume pre(S, i), suf(S, i) means S1S2 . . . Si
and SiSi+1 . . . Sl.
Assume for some i, pre(S, i) matches node x in Ap and suf(S, i + 1)
matches node y in Aq, then all pair of nodes (u, v) such that u is the
ancestor of x on the fail tree of AP and v is the ancestor of y on the fail
tree of AQ represents a legal (A,B).

Zhejiang University 06.10.2023 3 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A. Putata Strikes Back
Solution

Then the problem is reduced to, given two trees and several pairs of nodes
(x, y), count the number of (u, v) where there exist a given pair (x, y) such
that u is ancestor of x in the first tree and v is ancestor of y in the second
tree.
Let’s enumerate u, then for all pairs (x, y) such that x is in subtree of u,
the number of possible v is equal to the number of nodes in the union of
path between y and root. Assume such union is S(u), then we can get
S(u) by merging all S(t) such that t is a son of u. Thus we can solve this
by heuristic merging (small to large technique) or segment tree merging.
The time complexity is Θ(n log2 n) or Θ(n log n).

Zhejiang University 06.10.2023 4 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

B. Xor is Add
Description

Find a permutation p, where pi ⊕ i = pi + 1.

Zhejiang University 06.10.2023 5 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

B. Xor is Add
Solution

Since pi + i = 2 · (pi & i) + (pi ⊕ i), then the constraint equivalent to
pi & i = 0.
Consider the most significant bit of n. Assume it is k, then we can pair all
x such that x ≥ 2k with y = 2k+1 − 1− x, which means px = y, py = x.
And the problem is reduced to the same problem with a smaller
n′ = 2k+1 − n. The reduction ends when n = 1 or n = 0.
The time complexity is Θ(n).

Zhejiang University 06.10.2023 6 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

C. Permutation Compression II
Description

Given a permutation of length n. You can delete arbitrary number of
elements which is a prefix maximum. Find the smallest number of elements
you will delete so that the number of prefix maximums is maximized.

Zhejiang University 06.10.2023 7 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

C. Permutation Compression II
Solution

We can get any increasing subsequence of the permutation after some
operations. We can delete the elements one by one from front to back that
are not in the increasing subsequence but have the largest prefix value.
Then the answer must be the longest increasing subsequence of the
permutation. Assume the LIS is i1, i2, . . . ik, then for all it ≤ u ≤ it+1, if
pu ≥ pit , we have to delete pu, so the number of deletion is determined,
and it is equal to the number of such elements. We can use DP to find the
LIS with smallest number of such elements, or we can also notice that we
just have to greedily select the LIS appearing in the permutation as early
as possible. Since this can make pit as large as possible, it is correct.
The time complexity is Θ(n log n).

Zhejiang University 06.10.2023 8 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

D. Simple Calculation
Description

Given n, k, t. Define g(x) as k · ϕ(x). Calculate g(t)(n).

Zhejiang University 06.10.2023 9 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

D. Simple Calculation
Solution

Since φ function is a multiplicative function, we can consider each prime
factor individually.
For each prime factor from n and g(·)(n), it will disappear after at most
2 log(n) iterations. The remaining effect of k to the result (after 2 log(n)
rounds) is a geometric progression. So we can simulate the first
min(2 log(max(n, k)), t) iterations and do the remaining rounds by using
quick power.
A typical implementation is to use std::map to maintain the prime factors
and their factorization results.
The time complexity is O(

√
n log(n) +

√
k log(k) + log(t))

Zhejiang University 06.10.2023 10 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

E. Surreal Number
Description

There are n piles of stones. Putata can take any positive amount of stones
from one pile each turn, and Budada can take one stone each turn. Putata
goes first. Person who takes away the last stone wins. Find the winner
under the best strategy.

Zhejiang University 06.10.2023 11 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

E. Surreal Number
Solution

If every pile has only one stone then the result is fixed.
Otherwise Putata can use his first operation to make the total number of
remaining stones even. After that he can take 1 stone each time to win.
Time complexity Θ(n).

Zhejiang University 06.10.2023 12 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

F. Yet Another Modify and Query Problem
Description

Given a sequence, support the following operations.
Change Ax into y.
Query the smallest i ∈ [l, r] to replace Ai with v, so the relative size
between all adjacent elements in A will not change.

Zhejiang University 06.10.2023 13 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

F. Yet Another Modify and Query Problem
Solution 1

For each i, the number that Ai can be replaced by is an interval. There are
four cases:

Ai−1 ≤ Ai ≤ Ai+1: v ∈ [Ai−1,Ai+1].
Ai−1 ≤ Ai > Ai+1: v ∈ [max(Ai−1,Ai+1 + 1),∞].
Ai−1 > Ai ≤ Ai+1: v ∈ [−∞,min(Ai−1 − 1,Ai+1]).
Ai−1 > Ai > Ai+1: v ∈ [Ai+1 + 1,Ai−1 − 1].

Let g(i) be the interval of Ai, noticing for an interval [l, r], the union of
g(i) that i ∈ [l, r] is at most two intervals. Use segment tree to maintain
such intervals and do binary search on segment tree, the time complexity
is Θ(n log n).

Zhejiang University 06.10.2023 14 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

F. Yet Another Modify and Query Problem
Solution 2

Assume we want to replace some element in [l, r], we only have to consider
the first three consecutive monotonic sequence.
The proof is a bit complex, the main idea is to discuss all the situations.
To implement this, use std::set to maintain all position i such that
Ai−1 ≤ Ai > Ai+1 or Ai−1 > Ai ≤ Ai+1, and check the first four such
positions and binary search on each monotonic sequence segmented by
these positions.
The time complexity is also Θ(n log n).

Zhejiang University 06.10.2023 15 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

G. Tag Game
Description

There is a directed graph. Each edge can be went through in two ways:
1. use t time to go through, but there is a p

100 probability to be teleported
to vertex 1 after going through the edge.
2. use c time to go through.
Calculate the minimum expected time for Putata to move from vertex 1 to
vertex n.

Zhejiang University 06.10.2023 16 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

G. Tag Game
Solution

When standing on a vertex, the best strategy will always be the same. So
if Putata has been teleported to vertex 1, then he should still follow the
same path back. This part can be calculated by using the sum of
geometric progression formula.
The whole process can be maintained by using Dijkstra’s Algorithm. The
time complexity is Θ(m log(n)).
Binary search for the answer and run Dijkstra’s Algorithm from vertex n to
vertex 1 can also pass, but you should optimize your constant since this
solution has a time complexity of Θ(m log(n) log(n·maxw

ε )), larger than the
standard solution.

Zhejiang University 06.10.2023 17 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Thanks!

Zhejiang University 06.10.2023 18 / 18


